
API Testing with BDD
Framework
Hands-on Exercises

Exercises Overview 0
Objectives 1
Reading Materials 1
Resources 1
Basics 1

Test your exposed application API’s 2
Exercise #1 - Creating testing application for exposed API (expected duration 30m) 2

Test CompanyCreateOrUpdate API 5
Exercise #2 - Testing Parameters, Output, Interoperability and Errors (expected duration 4h
30m) 5

#2.1 - Setting up our test scenario base structure 8
#2.2 - Updating our API under test 9
#2.3 - Building our test logic 11
#2.4 - Setup & Teardown steps 13
#2.5 - Error Handling and Status Codes 15
Summary 21

Exercise #3 - Security (expected duration 1h 30m) 21
#3.1 - Create Demo Auth API 21
#3.2 - Test the Security of the API 22
Summary 27

Exercise #4 - Data (expected duration 1h 30m) 27
Exercise #4.1 -Check Data if data persisted (expected duration 30m) 27
Exercise #4.2 (Optional) - Following the Testing Pyramid Thinking Model (expected
duration 1h) 28

Overall Summary 29

Exercises Overview
There are multiple types of API’s you can build with OutSystems. You can build REST or SOAP
API’s, but you also build service actions, which are actually REST API endpoints that are only
available within the platform.

On top of that, applications built within your OutSystems factory can also consume external
API’s, both REST or SOAP.

Ensuring API’s are working as expected and specially complying to their defined contracts is a
crucial part of any testing strategy. To accelerate the way you and your teams can perform
these kinds of tests, you can build automation.

In the application portfolio provided, the CRM Services application already exposes service
actions and API endpoints, which we will be building automated tests for during our next
exercises.

Objectives

To provide exercises that demonstrate how to test our own APIs, using the BDD Framework to
build automated tests for APIs and Service actions, to address some common anti-patterns for
testability and how we can use a data driven approach.

Note: to use this approach to test external APIs make sure that setup and teardown methods
are available otherwise the tests might not have the correct results.

Reading Materials

● API Testing (Becoming a tester in OutSystems - Guided path)
● Throw a Custom Error in an Exposed REST API
● How to Handle HTTP Status Codes When Consuming a REST API in

OutSystems

1

https://www.outsystems.com/learn/courses/181/api-testing/?LearningPathId=10
https://success.outsystems.com/Documentation/11/Extensibility_and_Integration/REST/Expose_REST_APIs/Throw_a_Custom_Error_in_an_Exposed_REST_API
https://www.outsystems.com/blog/posts/handling-http-status-codes-consuming-rest/
https://www.outsystems.com/blog/posts/handling-http-status-codes-consuming-rest/

Resources

● BDD Framework

Basics

Our goal is to test the API’s following the POISED strategy:

● Parameters
● Output
● Interoperability
● Security
● Errors
● Data

To recap, while testing Outsystems API’s we should focus on the following:

● Parameters

○ Mandatory/optional inputs

● Output

○ API Response

● Interoperability

○ Input and Output formats according to the specification

● Security

○ Authorization

● Errors

○ Error message meaningfulness and status code

● Data

○ Is data persisted as expected

2

https://www.outsystems.com/forge/component-overview/1201/bddframework

○ Verify functional and non-functional Requirements

So, for these exercises we will be using the BDD Framework.

Test your exposed application API’s
When testing your exposed APIs you have the advantage of having access to
reference your actions and database to enhance your tests.

Exercise #1 - Creating testing application for exposed API (expected
duration 30m)

In this exercise, the main goal is to prepare our test application for using
POISED strategy.

First, let’s capture our API test objects that we’ll be using for this exercise

1. Open service center for your personal area and get the documentation swagger file URL
for the API exposed by the module Customers, from CRM Services App:

3

2. Now that we have the API’s, let’s create a new app that will test the
app “CRM Services”.

3. Open Service Studio and create a new app from scratch and select
the BDD Framework as the template and call it “CRM Services Test”

4

4. After the above step you have to create a module inside that app, and
for that you should create it based on the BDD framework module
type.

5. Now that we have the application and the module created, we need to consume the
swagger url of the CRM Services API module and select only the
“CompanyCreateOrUpdate” and “GetCompanyByName” methods.

Now put the swagger url that you have on the API definition documentation:

5

Click on “Add Methods” and then select the following methods:

Now that we have the methods added it’s time to test those APIs.

For that purpose, our next exercises will be focused in testing the CompanyCreateOrUpdate
API endpoint, applying the POISED strategy.

6

Test CompanyCreateOrUpdate API

Exercise #2 - Testing Parameters, Output, Interoperability and Errors
(expected duration 4h 30m)

Since these vectors of the POISED testing strategy are very connected we will simulate the
testing of all them in this exercise.

Our goal for the whole exercise is to test the following :

● Parameters - Mandatory/optional inputs

● Parameters - Request Headers

● Output - API Response

● Interoperability - Input and Output formats, according to specification

● Errors - Error message meaningfulness and Status code

Based on the previous vectors of the POISED strategy, since they are very related, we are going
to use a data driven approach. The idea is to cover all the tests we’ll build with a single reusable
scenario.

As our strategy for data driven testing, we will use a static entity instead of a spreadsheet. Now
you ask...why? The reason is the maintenance of that information. With the spreadsheet as a
resource for every single change you end up downloading and uploading the file and
publishing, with the static entity it becomes easier this task. Also, this enables you to read and
change your test data, directly within the service studio, which is not possible with the
spreadsheet approach.

Note: Avoid having static entities with more than 300/400 records. If you have a scenario that
covers way more than this number of tests, use a spreadsheet for that particular case.

For the first part of our exercise we will build the following scenario:

7

Scenario: <ScenarioName>
Given:
There is no company called <CompanyName>
And
I want to create the company with name <CompanyName>, Company Type <CompanyType>,
email <Email> , country with code <CountryCode>

When:
I call CompanyCreateOrUpdate endpoint with those attributes

Then:
if(<ExpectedSuccess> = true) -> if condition added inside expression or another step

The response returned a valid Company Id
else

The output message received is <OutputMessage>

DATA STEERING TABLE

Scenario
Name

Company
Name

Company
Type

Email Country
Code

Expect
Success

Output Message Ex.
Order

Company
Success
Creation

Covid Free Customer covidfre
e@exampl
e.com

US true 0

Mandatory
Fields
Missing

Covid Free false Company type,
Email and
Country are
mandatory

1

Invalid
Email
Format

Covid Free Customer covidfre
e.exampl
e.com

US False The email
format is not
valid

2

This scenario has some dynamic values <example> and a data steering table that basically
represents our test data.

As you can see from the above scenario we will perform a couple of validations, but the API
“CompanyCreateOrUpdate” (from the first exercise) that we are going to use to make the tests,
does not have those validations developed yet. So our goal not only is to test the API but also to
make sure that is developed properly.

For the sake of the exercise let’s assume that you have forgotten to put those validations on the
API when you coded it.

So the first thing that we need to do is to fix it in order to have the validations stated on the
scenario. Having this in mind let’s start our exercise.

8

#2.1 - Setting up our test scenario base structure

6. Now, let’s create a static entity called “DataSteeringTest” with the DATA STEERING TABLE

column fields and one extra field called ScenarioName (the data for you to put in the
fields and what records to add are the ones from that same table). This last field should
hold a meaningful name in order for the scenario name to change based on the test
running. For the CompanyType and Country you need to reference those tables from the
module Customer. The static entity should be something similar to this:

7. Once you finish the static table, add a new screen to the TestFlow, naming it
“Company_DataDrivenTestSuite” and select the Data-Driven Scenario (Static Entity)
template:

9

8. Still, inside the module created create a new UI flow called “
CompanyCreateOrUpdateTestScenarios”. This will be the flow to hold the test scenario
web blocks.

9. Now, let’s start to build our test scenario, to accelerate the development we will use the
template weblock called “Template_APINegative_Scenario” (from the Templates flow) as
the starting point.

10. Rename the webblock to “Company_DataDrivenTests”, drag it to the flow
“CreateCompanyOrUpdateTestScenarios” and now let’s add to the webblock an input
parameter with the static entity record data type:

a. InDataSteeringTestRec [record]

11. Add 2 extra input parameters to have the Company Type and Country Code for filling in
on the descriptions of our tests since in our static entity we have only the IDs. In order to
fetch that information, on the aggregate to iterate the static entity just do a join with the
entities “CompanyType” and “Country” from the Customer module

12. For now we are just adjusting the test steps descriptions, the text on them should
change according to the test that is running, so adjust them to be dynamic (use
expressions and IFs).

13. Before we implement the logic for our test to run, we need to make sure that our API
has the proper validations in place.

#2.2 - Updating our API under test

The goal of this part is to validate if the “CompanyCreateOrUpdate” API handles the
validations of themandatory Parameters and their format (Interoperability),
returning the correct messages, based on the requirements of the test scenarios.

10

14. Go the “Customers” module, and if you open the API that we are exposing we are using
the action “Company_CreateOrUpdate”:

15. Inside server action called “Company_CreateOrUpdate” you will see that there’s no
validation being done on the flow:

11

16. So, let’s create a server action called “Company_Validate”, with an input parameter with
structure of the Company record and with an output structure having the fields
“IsSuccess” and “OutputMessage”. So, something like this:

17. On that action created, the expected validations (based on the scenario) are the

following:

- Mandatory fields check:

- Company name

- Company type

- Company email

- Company country

- Format validations:

- Company email must be a valid email address

- Suggestion - use the platform built-in function

“EmailAddressValidate”

Attention: when building this validation logic, ensure you build all the correct validations

with the expected output message in order to match with the output message of the DATA

STEERING TABLE

18. Now that you have created the validation action, you need to adjust the server action
“Company_CreateOrUpdate” and also the REST API that we are exposing. So, let’s start by
changing the server action to have an output structure with the fields “Id”, “IsSuccess”
and “OutputMessage”.

12

19. Inside the action “Company_CreateOrUpdate”, add the validation action
“Company_Validate” before the server actions “Company_create” and “Company_update”.
Now, after that action add IF condition to check the response “IsSuccess”, if the response
is “False” (false branch) set the output with the Company_Validate response fields
IsSuccess and OutputMessage.

20. Now that you have fixed the server action with the validations, it’s time to fix the API to
also send the new output structure. First put the output structure of the Alike this:

● Id [CompanyId]
● IsSuccess [boolean]
● OutputMessage [text]

21. Now, based on the response of the “Company_CreateOrUpdate” action, set the REST API
output structure with the specific values from that response.

22. Since the response of the REST API has changed, you need to readjust also the consumer
modules. Go to the module “CRMServicesAPI_Tests” and refresh the REST API in order
for the output structure to be updated and fix any errors/warnings due to that change.

13

#2.3 - Building our test logic

23. After the previous changes are published, it’s time to start building our test scenario
steps logic, so, inside the module “CRMServicesAPITest” and let’s start by creating the
GIVEN step to verify if there’s already a company with that name.

24. Below we have the bdd step block logic that can be used:

Given

25. Now that you finished the GIVEN, let’s create the WHEN step logic, to call the REST API
using the record that was set on the previous step (GIVEN) and store the response in our
local variables to check on the THEN steps. It should be something like this:

14

26. Finally let’s create the THEN step based on the previous stored response:

THEN (if IsSuccess = True)

Verify if a valid id was
generated for the record.

THEN (if IsSuccess = False)

Verify if the output message is the expected
for the error

27. Once you have finished the last step, you need to create a new UIFlow called
“CRMServicesTestSuites”, this will hold the test suite screens.

28. Now, inside the above UIFlow add a new screen, using BDDFramework Data-Driven
Scenario (Static Entity) screen template and then call it
“CompanyCreateOrUpdateTestSuite” that basically will have all the tests for the
CompanyCreateOrUpdate API.

29. On the test suite page “CompanyCreateOrUpdateTestSuite” (created on the previous
point) inside the preparation change the aggregate in there to fetch data from the static
entity “DataSteeringTest” created earlier. To ensure the expected outcome of the
exercise, order the records by the “ExecutionOrder” attribute, ascending.

15

30. Finally, add the web block “Company_DataDrivenTests” to the list record already created
replacing the template webblock.

31. Run the page and you will see that only the first have passed. All other tests should be
failing on the first GIVEN step. And if you re-run your test suite, all will fail due to the
below condition.

If this is not happening to you it means that you are already taking into account the
correct setup and teardown steps. If yes, the next part of our exercise is a confirmation
of what you have done, otherwise you should correct where you feel necessary,
following these next steps.

#2.4 - Setup & Teardown steps

32. The reason for these failures is because we have an assertion validating the
non-existence of the company, and our first test is actually creating one with that name
for a success scenario. So, what we have to do to solve this, is to create a teardown step
that resets the system to its initial state whenever a company is actually created.
Following best practices, we should make use of our SETUP and TEARDOWN steps in
order to keep the isolation of the tests, and ensure repeatability without human
intervention.

When testing APIs, just like we do with component testing, you need to take into account
the data that is required for the test.

● SETUP: use it when you need to ensure pre-existing data that is required for your
test execution.

● TEARDOWN : use it to ensure you clean-up any system changes that are a result
of your setup and its test execution. It should ensure that the system is reset into
its original state.

16

33. Since our test execution can create data, we will need a teardown stage at the end of our
test scenario. So let’s start by creating a new service module inside your test app called
“CRMServicesAPITest_DataSetup”

34. Now consume the server action “Company_Delete” and the “Company” entity from the
“Customers” module.

35. Create a folder on the server actions called InternalAPIs

36. Inside that folder create a public server action called “Company_Teardown” and in this
action use the referenced action. Given a company id, if it isn’t a null identifier, it should
call the delete action.

37. Now, go back to your test scenario and add the teardown in order to delete the company
created.

38. Because we already have an existing record in our database, we can also add a Setup
step to our scenario. It should check if the input company name exists, and if it does, we
can reuse our “Company_Teardown” action to remove it, this way ensuring the required
pre-conditions for our test to successfully execute.

SETUP (Optional) TEARDOWN

1. Our test suite will execute multiple tests, where the action under test is an API call.
While our Test suite steps has one single transactional scope, each API call has its
own transactional scope. Our Setup and Teardown steps are using server side logic to

17

delete the record, so it executes within the transactional scope of the flow, which is
only committed at the end. In this exercises you might not have concurrency problems
but if you want to make sure it’s avoided, just add the commit transaction (action needs
to be imported from the “System” dependency) on your Setup & Teardown code to look
like this:

SETUP TEARDOWN

39. Now publish your test application and re-run your test suite. and all the expected
success tests should PASS. If at this stage you still have any FAILING scenario, you
probably have an error either in your test code, or on the code under test.

#2.5 - Error Handling and Status Codes

One of the important best practices when doing APIs is to handle errors with status code in
order for the consumers to receive a proper response. So, the API should have an error
handling and should raise HTTP error codes for giving meaningful information.

The below scenario is basically the same set of tests used in the first scenario, but it adds
error handling specific test data (we added a new column called “Status Code”and slightly
changed the scenario itself).

18

Scenario: <ScenarioName>. Test w/ error handling
Given:
There is no company named <Name>
And
I want to create the company with name <Name>, Company Type <Type>, email <Email>
, country with code <Country>
When:
I call CompanyCreateOrUpdate endpoint with those attributes
Then:
if (expected success = true)
{

The request was successful and response returns Id a number <> 0
}
else
{

The endpoint call fails with status code = <StatusCode>
and the error message = <OutputMessage>

}

DATA STEERING TABLE (New column in green background)

Name Type Email Country
Code

Expect
Success

Status
Code

Output Message

Covid
Free

Customer covidfree@ex
ample.com

US true 200

Covid
Free

false 400 Company type, Email
and Country are
mandatory

Covid
Free

Customer covidfree.ex
ample.com

US False 400 The email format is
not valid

40. Let’s start by fixing our API, to include these error handlings. You can either change our
original test scenario, or creating a new one by copy the original and making the
required changes. It’s advisable to copy the original and change it in order for you to
have both tests, the first one just for reference.

41. Now that you have the new webblock ready, add a new attribute to the test data static
entity, which will hold the expected status code, and then update the static records with
the expected status code value based on the above test scenario.

42. As a second step, adjust the webblock based on the test scenario. If you noticed the
THEN step of this scenario is different from the first exercise. The text on the steps

19

description should change according to the test that is running, so use expressions with
the proper input parameters.

43. Now that we have both the scenario updated, and the static entity data updated, we
need to adjust our “CompanyCreateOrUpdate” REST API. Following the best practices,
the APIs should have an error handling and should raise HTTP error codes for giving
meaningful information. Based on the above table if a validation fails it should raise the
error and set the proper status code. Go to the “Costumers” module and add the
dependency action “SetStatusCode” from the “HTTPRequestHandler” extension

44. After you reference the action go to the REST API and after the action
“CompanyCreateOrUpdate” if the IsSuccess output field is equal to “false” you will set the
status code and raise the exception. Use a custom user exception created by you to raise
the error.

45. Now, it’s important to understand where to put that error handling. If somehow you
were thinking that the validation action should have this error handling is wrong
because if the action is going to be used in other places, you don’t want to raise
unexpected errors. That’s the reason to put this handling directly on the API method.

Now that we have the API raising the HTTP error, we need to handle these errors on the
consumer side. So go back to the “CRMServicesAPITest” module and let’s edit the
“OnAfterResponse” handler on the consumed API.

Inside the “OnAfterResponse”, if the response sends a status code > 399 (which based on
our documentation is the minimum code that does not correspond to an error), we will
raise an exception created by us on this consumer side. Create a user exception called
“RESTException” and use it to raise the error based on the code and send the
“ResponseText” field in the exception message:

20

46. What we did on the previous point, is to fetch the error of the response and raise a
custom exception to send the error structure of the REST JSON response which is
StatusCode[text] + Errors [Text list]. For us to complete our updated test scenario, we
need to handle this custom exception inside our test steps. So still inside the
“CRMServicesAPITest” module, we need to create a structure like this to hold the
response:

21

47. Now on the WHEN step of the scenario that makes the call to the API we need to handle
the custom exception and store the values to be validated on the THEN steps. In order to
do that you will need to deserialize the exception message using the data structure
created before (StatusCode[text] + Errors[Text list]). It should be something like this:

22

48. The output message coming from the exception handle should be stored in the same
variable already being used to store the output message from the REST API.

49. Finally, on the THEN steps use the stored values to do the proper asserts.

50. Now that we have our scenario complete, and re-run the test suite to see the results. if
you created a new webblock make sure you add it to the Test Suite replacing the first
exercise webblock before running again the test.

51. If you noticed there are some patterns that we have done more than once...which is
whenever we assert if a company with a given name exists. So, to conclude this part of
our exercise, let’s make a server action for each reusable case with the proper assert
condition in order to be reused. Replace the asserts of this scenario and the first
scenario by these actions. Now remember to do this in similar cases (by the way, did you
place it in the correct module? After all, these are shared patterns. Remember the
architecture of the tests).

Summary

With this exercise you learned how to check the parameters needed for the
request and handle errors on the API and to send the proper output with
meaningful information, including status code. It is a good practice to build
your API’s having this in mind.

You also learned how you can implement API exception handling, that you can then use in your
test applications to verify your API expected behavior for error scenarios.

Exercise #3 - Security (expected duration 1h 30m)

On this exercise, as part of the security test we will check the following :

● Authorization

The goal of the exercise is to put in place the test in order to check the security of an API. The
purpose is not only for you to learn how to test the security of an API, but also to learn some
best practices when setting up the security of an API.

23

https://docs.google.com/document/d/16GD6qHYOb2nAeb0f9w7HX4YVKKxLBIGsr239FjEB9Wo/edit#heading=h.qu5vt3cbx0qz
https://docs.google.com/document/d/16GD6qHYOb2nAeb0f9w7HX4YVKKxLBIGsr239FjEB9Wo/edit#heading=h.qu5vt3cbx0qz

This API does not exist, so we are going to create that API to be tested.

#3.1 - Create Demo Auth API

For the sake of the exercise we are going to add basic authentication to the API but we are
going to restrain the ability to use it only to users with a certain role. The next steps will guide
you on this process, and the first step is to create the REST API itself:

1. The next test we want to mimic the assessment of the API security with basic
authorization and in this case we are not going to do a successful test login but an
invalid login. So, go to the module “Customers” and create a new REST called
“DemoAuthAPI”

2. Then, add a new method called AuthorizationToken with “basic” authentication and
returning a GUID (use the system action generate guid) as a dummy output, for the sake
of this exercise you just need to send back something on the response:

3. Since you have set the “basic” authentication there’s a system handler that was added to
the API called “OnAuthentication”. In order to introduce a restricted access to the to the
REST API, create a role called “Authorization”

24

4. Now inside the “OnAuthentication” handler, add the check of the role created on the
previous step and if the user doesn't have this role set the response code to 403, using
the “SetStatusCode” action from “HttpRequestHandler” extension. It should be
something like this:

25

#3.2 - Test the Security of the API

Now that we have the API created it’s time to test it. We have the following test scenario and for
the sake of the exercise we are only using one user, but the correct implementation would be a
data driven scenario having seed data for 2 users, one with a role and another without role:

Scenario: Verify API Security
Given:
I have the user with username “aaron.sullivan” and password <password from
aaron on your personal environment>
When:
I call the AuthorizationToken method from DemoAuthAPI endpoint with the
given details
Then:
IF (user has no role)

The call returns the code 403 (forbidden)
Else

The call returns a GUID not empty

5. Let’s start the development of our test. First, go back to the “CRMServicesAPITest” and
consume the above API.

6. Now set on the advanced options of the consumed API to have a “OnBeforeRequest”.

7. Click on “Manage Dependencies” and consume the actions “TextToBinaryData” and
“BinaryToBase64” from the BinaryData extensio.

8. Now let’s create two session variables SecureAPIUsername and
SecureAPIPassword to hold the username and password to test the
security of the API.

26

9. On the action “OnBeforeRequest” let’s add the basic authorization with the session
variables that hold the test username and password like this:

10. Now add the handler “OnAfterResponse”, and let’s raise an error if the status code >
399 (which based on our documentation is the minimum code that does not correspond
to an error). You already have something similar on the exercise before for the error
handling:

11. On the message of the raised exception send the “ResponseText” field of the Response
structure.

27

12. Now we need to set our seed data for the test, so, create a static entity called
AuthenticationUser with 2 attributes “Username” and “Password” need to get the user
credentials. If you don’t know the password of user aaron.sullivan go to the Users app
https://<yourpersonaldomain>/users, access it by using the application user “admin” and
change the password of the user “aaron.sullivan” to use it on the scenario above

13. Since we already have the user in place, it’s time to create a new web block to test this
scenario. So, create a new Webflow to hold this new webblock and create a new test
suite screen to add the test scenario.

14. Now, that you have already the test suite in place let’s begin to work on the test scenario.
On the GIVEN step of your test scenario make sure change the session variables to set
up the credentials before making the call to the API

15. Now let’s reuse the structure we created to hold the errors raised by an API.

16. After making the call the response might be an error, so, add an exception handler to
grab the specific error handler that we have created on the “OnAfterResponse” and store
that information to be used in the next steps, in a variable with the structure built on the
above point

28

17. Now that you have set the when step it’s time to do the THEN step. In this step you will
check the status code stored on previous steps

18. After finishing the scenario above, add the web block to the test suit and run it, this test
should PASS

19. One test is done, so it’s time to do the second test, go to the Users and add the role to
aaron.sullivan and run again the test, it should also PASS but showing the description of
the Else part of the THEN step. This step was manually because for the sake of the
exercise we did not created our seed data, so, create our users, one with role and
another without the role to make the proper implementation,

Summary

With this exercise you learned how to test security of your API. This also will help you to
understand the concerns that you have to have in order to make a correct API for other
consumers

Exercise #4 - Data (Optional, expected duration 1h 30m)

On this part of the testing strategy, the goal is to test the following :

29

● Is data persisted as expected

● Verify functional and non-functional requirements

For this section we are going to check if the data created matches what is saved on the
database, and for that we are going to use the API GetCompanyById to compare if the values
are correct.

Exercise #4.1 -Check Data if data persisted (expected duration 30m)

1. Create a new web block on the scenarios UIflow to hold the following scenario (use the
simple scenario template as starting point to accelerate):

Scenario: Verify Company Create Or Update Saved Data
Given:
There’s no company named “Lost Chain”
And
I want to create the company with the name “Lost Chain”, Company Type
“Customer”,email “lostchain@example.com” and country with code “US”,
Phone “(435) 341-1234”
When:
I call CompanyCreateOrUpdate endpoint with the given details
Then:
The endpoint returns successfully (200 ok)
and
The information created is correct

2. Now, on the THEN step use the GetCompanyById to retrieve the data saved and make
the proper assert (tip: use the assertTrue to compare all value in just one condition). This
will be done on the THEN step because if the API is slow the results from the DB might
not be up to date.

3. To finalize our implementation, don’t forget to do the Teardown step to clean the created
data.

4. Add the web block to the test suites screen and run it. The result of this part should be
GREEN

30

Exercise #4.2 (Optional) - Following the Testing Pyramid Thinking Model (expected
duration 1h)

On the exercise #4 we are doing functional validation on our API endpoint to
verify the correctness of the purpose of the endpoint on handling data. This
is in fact a part of the POISED strategy, specifically for the Data part, but for
this exercise now, we want to challenge you to think - is this test we just
designed following the recommended practice of applying the Test Pyramid
thinking model?

The fact is, we are testing an API that we control, right? This is an API
developed within our outsystems factory and within our domain. On top of
that, if we look at the implementation of our “endpoint under test”, it is
actually just executing a server action where all the functional behavior and
data handling is done, and then grabbing its output and returning it.

So again, are we following the testing pyramid principle?

The answer is we’re not.

The testing pyramid principle states that we should only perform our
verifications on upper levels of the pyramid for those validations we cannot
address in any way with lower level testing. And if we already have this
validation done through lower level testing, it will then be redundant to
repeat that same validation through upper level testing.

As such, the validation we are addressing in this specific scenario, should be
done through component testing, and not API testing.

For this exercise, we want you to refactor the solution of the previous
exercise to a component test. The solution will be pretty simple. The purpose
of this exercise is just to highlight simple considerations one should make
when building automated tests to ensure we follow the pyramid principle &
avoiding duplication of effort/responsibilities across different test types.

31

Overall Summary

With these exercises not only you saw how to use the POISED testing strategy but also how to
work with the SETUP and TEARDOWN data having to commit the information in order to avoid
impacts on the other transactions when doing API testing.

So when you are building APIs make sure you follow these practices and test them, to be
bulletproof as much as possible.

32

